Tìm hiểu về bài tập bất đẳng thức lớp 10 1

Tìm hiểu về bài tập bất đẳng thức lớp 10

Bất đẳng thức luôn là một chuyên đề quan trọng và thuộc dạng khó đối với các em học sinh lớp 10. Ngoài những phương pháp giải bài tập bất đẳng thức lớp 10 đã được học, học sinh cần phải biết cách ôn tập và rèn luyện tư duy linh hoạt, biết cách áp dụng những phương pháp được học vào giải bài tập bất đẳng thức.

Bất đẳng thức là gì?

Bất đẳng thức là một phát biểu về quan hệ thứ tự giữa hai đối tượng, với hai đối tượng là các biểu thức chứa các số và các phép toán.

Tìm hiểu về bài tập bất đẳng thức lớp 10 2

>> Đọc thêm: Bất đẳng thức đáng nhớ cơ bản cần nắm vững

Bài tập bất đẳng thức lớp 10

Bài 1

Trong các khẳng định sau, khẳng định nào đúng với mọi giá trị của x?

  1. 8x > 4x ;
  2. 4x > 8x
  3. 8x2 > 4x2 ;
  4. 8 + x > 4 + x

Lời giải

  1. Chỉ đúng khi x > 0 (hay nói cách khác nếu x < 0 thì a) sai)
  2. Chỉ đúng khi x < 0
  3. Chỉ đúng khi x ≠ 0
  4. Đúng với mọi x.

Vậy khẳng định d là đúng với mọi giá trị của x.

Bài 2

Cho số x > 5, số nào trong các số sau đây là số nhỏ nhất?

Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10

Lời giải

Với mọi x ≠ 0 ta luôn có: Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 hay C < A < B.

Lại có x > 5 ⇒ x2 > 52 (Bình phương hai vế)

⇒ Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 (Nhân cả hai vế của bất đẳng thức với Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10 )

Giải bài 2 trang 79 SGK Đại Số 10 | Giải toán lớp 10

Vậy ta có C < A < B và C < A < D nên trong bốn số trên, C là số nhỏ nhất.

Kiến thức áp dụng

+ Cộng cả hai vế của BĐT với một số bất kì, bất đẳng thức không đổi chiều

a < b ⇔ a + c < b + c

+ Nâng hai vế của bất đẳng thức lên một lũy thừa bậc chẵn:

0 < a < b ⇔ a2n < b2n với mọi n ∈ N*.

+ Nhân cả hai vế của BĐT với một số dương thì BĐT không đổi chiều:

a < b ⇔ a.c < b.c với mọi c > 0.

Bài 3

Cho a, b, c là độ dài ba cạnh của một tam giác.

  1. Chứng minh (b – c)2 < a2
  2. Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)

Lời giải

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

Bài 4

Chứng minh rằng:

x3 + y3 ≥ x2y + xy2, ∀x, y ≥ 0

Lời giải

Ta có: x3 + y3 ≥ x2y + xy2

⇔ (x3 + y3) – (x2y + xy2) ≥ 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) ≥ 0

⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)

Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.

Kiến thức áp dụng

+ Lũy thừa bậc chẵn của mọi số luôn ≥ 0.

A2n ≥ 0 với mọi A và n ∈ N*

Bài 5

Chứng minh rằng:

x4 – √x5 + x – √x + 1 > 0, ∀ x ≥ 0

Lời giải

Đặt t = √x (điều kiện t ≥ 0), khi đó

x4 – √x5 + x – √x + 1 = (√x)8 – (√x)5 + (√x)2 – (√x) + 1 = t8 – t5 + t2 – t + 1

Ta cần chứng minh : t8 – t5 + t2 – t + 1 > 0

Cách 1:

+ Xét 0 ≤ t < 1 ⇒ t3 < 1 ⇒ 1 – t3 > 0 ; 1 – t > 0

t8 – t5 + t2 – t + 1 = t8 + (t2 – t5) + (1 – t)

= t8 + t2.(1 – t3) + (1 – t)

> 0 + 0 + 0 = 0

+ Xét t ≥ 1 ⇒ t3 ≥ 1 ⇒ t3 – 1 ≥ 0 và t – 1 ≥ 0.

t8 – t5 + t2 – t + 1 = t5.(t3 – 1) + t.(t – 1) + 1

≥ 0 + 0 + 1 > 0

Vậy với mọi t ≥ 0 thì t8 – t5 + t2 – t + 1 > 0 hay x4 – √x5 + x – √x + 1 > 0, ∀ x ≥ 0 (đpcm)

Cách 2:

2.(t8 – t5 + t2 – t + 1) = t8 + t8 – 2t5 + t2 + t2 – 2t + 1 + 1

= t8 + (t4 – t)2 + (t – 1)2 + 1.

≥ 0 + 0 + 0 + 1 = 1.

(Vì t8 ≥ 0 ; (t4 – t)2 ≥ 0; (t – 1)2 ≥ 0)

⇒ t8 – t5 + t2 – t + 1 ≥ 1/2 > 0 hay x4 – √x5 + x – √x + 1 > 0, ∀ x ≥ 0 (đpcm)

Bài 6

Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.

Lời giải

Giải bài 6 trang 79 SGK Đại Số 10 | Giải toán lớp 10

Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.

ΔOAB vuông tại O, có OM là đường cao nên MA.MB = MO2 = 1 (hằng số)

Áp dụng bất đẳng thức Cô-si ta có:

MA + MB ≥ 2√MA.MB = 2. √1 = 2

Dấu « = » xảy ra khi MA = MB = 1.

Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.

Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)

Vậy tọa độ là A(√2, 0) và B(0, √2).

Bài 7

Trong các mệnh đề sau, mệnh đề nào đúng

  1. 3,25 < 4;
  2. -5 > -4 1/4;
  3. -√2 ≤ 3 ?

Lời giải

Mệnh đề đúng là a) 3,25 < 4 và c) -√2 ≤ 3

Mệnh đề sai là b) -5 > -4 1/4

Categories

Related Posts

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *